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The problem considered is the propagation of unloading waves, which was
proposed by Rakhmatulin [1]; the existence and uniqueness of functions
describing unloading waves is shown; certain qualitative properties of
these functions are studied. It is shown that as t — ®, the speed of
propagation of unloading waves approaches asymptotically the speed of
propagation of elastic distortions.

1. Formulation of the problem. One seeks functions u(x, t),
v(x, t), f(x) such that the continuously differentiable function f(x)
divides the domain x >0 of the x, t plane into two domains D, and D,;
the functions u(x, t) and v(x, t) are continuous on x >0, continuously
differentiable on the domains D; and D,, and satisfy:

in the domain D, the system of equations
v (2, t) = u (2, t), v (z, t) = a® (u) u. (x, ) (1.1)

and the condition

ulz, ) > u(x ty) for >t
in the domain D, the system of equations

v (2, 1) = uy (2, 1)
o (2, 1) = e (3, 1) + [a? (2) — g, 2@ 1.2)

and the condition

u(z, ty) <u(z, ) for 1>t

Besides
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o(u (0, 8)=p() fort>0
o (0,2)=qg(1) for 0>1>7()
u(z,t(0) =0, v(z, v(0) =0 forr>0

where p(t) and q(t) are continuously differentiable functions such that

pO)=q©), p@<0 ¢@H>0

The function a(u) is a continuously
differentiable monotone decreasing function,
defined by the equation (see Fig. 1)

1 ds(e
= 7 -?19 (a(u)y=ao for u< %)

(O T
w

where p is the density for u = 0, that is Fig. 1.

p = const; the function 7(e) is defined by
the equation ofe) = ¢{71).

2. Lemma 2.1. 1f there exist functions u{x, t), v(x, t), f(x) satis-
fying the conditions specified above, then

1 df 1
a (e (£) > dar > _— (2‘1)

ao
where here as well as in later considerations, we have set

e (r) = u(z, f (%)

Proof. Let us suppose that at a certain point the inequality (2.1)
does not hold. Then there is an entire interval [xo - U, x + u]; with
p > 0, such that the inequality does not hold throughout this interval.
As 1is known

ou i ov .
a——:uxcostp-{-utsmq:, b—gzvxcoscp—l-vtsmcp

where Ou/0. and Ov/Os are directional derivatives along f(x) and tan ¢ =
=)

From (1.1) and (1.2) we obtain

1 ou ov 1
+ o8 2 Y = D — 2 on D 2.2
Uy (oscp(f a2> 7 s o5 fl (2.2)
—cos@ilfpp L) Oy Ao p, 2.3
“ (‘Osq)a‘z (f 0,2) - 3sf ds a2 B (25
where .
wt=limu, (r, t} for (z, t)& D, (z, 1) — (z, [(x)

;- == limu, (e, 1)  for (r, t) & Dy, (z, t)— (z, [ ()}
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since u,* >0, u,” < 0, and (2.1) does not hold, from (2.2) and (2.3)
it follows that

ou, OJvi1
Ef—ﬁa—f:() (2.4)
Further, notice that f(0) = 0 and f(x) = z/a; *+ T(&*), which follows
from the fact that, in the domain bounded by the straight lines ¢t = T(0)
and t = x/a0 + 1(e*), the systems (1.1) and (1.2) coincide. Let us
suppose that there exists a point x, such that f'(xl) < 0; then f(x)
would have a minimum on the interval (x, ®), say at the point xq, and

there would exist an interval [z,—u,, "2+“1]'
with u; > 0, on which
tsp>-1 2.5)
a, aq
that is, (2.1) does not hold. As has already
been shown, on this interval (2.4) holds.
Consider the interval [12 - My, x, * yl,
Hy = 1/2 M;. Let us set

5 u(z, t)y for t<f(2)
e, "{e () for 1>1(z)

Then, for arbjtrary z; in [32 - Hyp, 7y + uz], there exists a function
t = y(x) defined for all x > x, and satisfying the equation

dy(x) __ 1

dz T a(u(,y)

(2.6)

for which y(x3) = f(x3), see Fig. 2. In Fig. 2 one has a graph of the
function t = y(x), and also of the straight line t = x/ao + T(e*), and
the coordinates of the points ay, a;, ..., a5 are the following

a ={x’ f(x)}’ a ={1‘ — W1, f((t —p'))y
bm(Ea—pn, )], Gz S}, %= b St )

Let us prove that

y(@)<f(z) forz>m
Indeed, if x > z, and z is in the interval [x2 - Hy, %o+ ul], then

W Lcd o y@<tE
dz ay dz

Further, from (2.5) and (2.6) we have

flzs) —F (@) < '—”‘;a:i*<5—* L Y=yt p)>BTBE Sl gy
0

(] 0 ap
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Bince f(x3) = y(x3), it follows that f(x,) - y(x, * u;) > 0; and for
x> zy + y; we have y(x) < y{zq + ;). From this, since f{x) = f(zg), one
deduces that y(xz) < f(x) for all x > z,.

Now, since y(x) < f(x) for x > x4, it follows that (x, y(x)) is con-
tained in D1 and that the curve is a characteristic of the system (1.1).

But y' < 0, and thus the curve t = y(x) must intersect the straight
line t = z/a0 + t(e*). Along this straight line one has u = const,
v = const, and along ¢t = y(x) one has

u

v+ b =const () = {e@at) 2.8
thus '
vz, (@) + VP (e(x)) =const for z & [xa— W, 2o+ Pa) (2.9)
Thus, for z in [z, -y, z, + b,
gi’. +a gii = (2.10)
and this, together with (2.4), gives Ju/ds = 0, dv/Jds = 0, or
e {x) = const, » {x, f(z)) = const (z &€ {23 — o, 22+ ta])

This in ture fmplies that, in the domein bounded by t = f(x) and the
characteristics of the system

t+£---f(z=—-m>—~?*—:—“==o, t— 2 —f@tp)+ 2R
(1]

o aq

one has u = const, v = const, which contradicts the fact that this domsin
lies in D,.

Thus, finally, f'(x) > 0. This implies that for arbitrary x there
exists a characteristic of the system (1.1) which passes through the
point (x, f(x)) and intersects t = x/ag + T{g*); that is, that (2.8) and
{2.10) hold throughout D;. Then, if for a certain x the inequality (2.1}
did not hold, there would exist an interval for which (2.4) and {(2.16)
hold simultaneously, and this is impossible, as has just been shown. Con-
sequently, the required inequality has been proved.

As was shown by Rakhmatulin [1], from the lemma just proved it
follows that the problem of determining f(x) reduces to the solution of
the following system of functional equations

aof (21) + 21 = ayt (2.11)
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aof (Iz) - .’132 == (10/ (2.12)
G (2 (22)) “1; G (= (%1)) 4+ pa, P (= (x2) — P (@) _ p (© (2.13)
1@) = sy = (e (@) (2.14)

and the problem of determining u(x, t) and v(x, t) reduces to the usual
boundary value problem for the system (1.1) and (1.2).

3. Discussion of the fundamental system of equations. Let
us establish certain simple properties of the system (2.11) to (2.14),
based on the assumption that it possesses a continuous solution.

3.1. Let us prove that f(x) <{ x/a;. Here, and in what follows, a, =
a(e(0)), x>0. Indeed, from equation (2.14) we have f(x) <\ x/a(e(x));
the function T(e) is defined only for e(x)<(&(0), and hence a(e(x))>a;;
this gives the desired inequality.

3.2. Let us prove that e(x) > e*. Recall that a(e) = a; for e e*.
Let us suppose that there exists an x; such that e(x;) <X e*. Then equa-
tions (2.12) and (2.14) give

aof (2)) — =, = ayt, aof (%) — %, = a,T (¢)

and since t =0, and 7(e) << 1(e*) < 0, this system has no solutions, and
the required inequality follows.®

3.3. Let us set

®F) = +pa -, v =— 4ot

Then
207 (8) =pa(ap + a), 2¥' (§) =pa(ay—a), or & >0, ¥ >0
In particular, there exists a & such that
D (E)>A>B> V¥ (E) for &y, E e [2(0) — 8, £ (0)] 3.1)
Let us put, in the system (2.11) to (2.14)

p @) = p (), T (e) = T ()

The solution functions of this system will be denoted in the sequel
by f;(x) and e,(x).

Lemma 3.1. Given two systems of the form (2.11) to (2.14) such that
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p1(0) = p, (0), pL(t) > p: (1), T, &) Ty (8)
Then

&, (Z) > € (2) for 2, < 7, (3.2)

Proof. Let us suppose that the lemma is not valid, i.e. that there
exist z, < z, such that €;(x,) < €,(x5). Consider two sequences

Ty = xllr zﬂly xsl’ vy X2= zlzy 1'2’, 2’3’, S

which satisfy

: . i ;.
== =y, a4 (3.3)
2y 1 4

such sequences will be called sequences
of type I.

These sequences are shown in Fig. 3,
where

Fig. 3. Ny = {z2, fa(@d)}, Ny={z, f1 (=)}

are the abscissas of the_points of sequences of type I, starting with xq
and x;, and z;’ and ’i+11 are given by (3.3).

Here we have employed the notation
/ij = /J (Ii’.), Eij =g (zij), A= g2 — g4l ai’ =a (81']), Tij = 17]- (eij)

It is obvious that for each ‘ij ope may obtain from (3.3) the corre-
sponding xi+11 in such a way that, for arbitrary %y and P there exist
sequences of type I, beginning with xy and xq. Further

fipy _ ofip’ —%igy’ ek —1 g fimd ot
ti aofi+1j + 0 agt + 1 %y @
as follows from property 3.1; thus
t-x+1j ay—a
1L ™1 3.4
t;7 St a 5-4)

This implies that tij -0 as_i ~ © and that ‘ij - 0 as i - ©; because,
from equation (2.11) one has xilsg “o‘ij' Let us suppose that

g2 > e, 2>t
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then
OENH—Y (e )=p@) OE)—=YiE )=nlt) pH<pE)
From this, it follows that
¥ (2342 — ¥ (6, D> @ (68 — @ (&)

or

y _ a(E)la+a (k)] bE(e 8] )
Ai+1 > KA, K= a (E;) [az —a (E;)] (gs e [s?_’_l, ei*lii]

Let us prove that siz > ail, tiz 2>t£1 imply that ti+12 ;"i+11' From

equation (2.14) and the relation (3.3) one obtains

(@ —agy )t + 20, J5; ]

H :
" 8+ a4
-t l= (80— a3 3) (a0 + a3V 82 + 203, T (a0 + 03, Ty
i-+1 1
(a0 -+ a§+i) {ap -+ ai+§)

. (ao — ai_ﬁ) {20+ ai_*j) t-;l + 2‘1,'.4.]1“ {ag -+ ai+§) T;.}.i -
(ag + “H—i) (a0 + aH_%)
_aglad— a6+ 82 —2v D+ (o — g e D (P — )
N (a0 + aH~i) {ao + G;'_;'.%)
2847 (80 + 0347) (T3 — Ty
(a5 -+ ‘IH&) (ap + ai_'j)

-+

+ L >0

And, since it was already shown that A, > 0, one obtains
81> a5, Tigi > T i >ty
In particular, therefore
5 — ) = (.}.2 — _1_)::2-~ (L — _i_)xl-- fr—nl) >0
ay [ a11 ag
Since A, > 0, t12 2>t11, then, for every i one has ti2 2>t£1, Ay >
KA., from which

i3

Y | R ARCEEETN (3.5)

n=1

Employing ’ij = ¢ as i ~ @ and the contipuity of the ¢.(x), one ob-
tains that all the xif, save possibly a finite number of them, lie in the
neighborhood [0, 5,], in which

s (z) €[2(0)—3, 2(0)}, &2 (x) € [ (0) — 8, ¢ (0))
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tor x in [oO, 51}, where 8 is the same as im property 3.3. Then there are
Just a finite number of the K, which are less that A/B, where 4 and B
are the same as in property 3.3; that is, from (3.5) we obtain Ai - ® 8§
i = o which contradicts the continuity of ej(x) at x = 0.

Theorem 3.1. The solution of the system (2.11) to (2.14), if it exists,
is unique in the class of continuous functions.

Indeed, let us suppose that the system (2.11) to ¢2.14) has two solu-
tions &,(x), f1(x) and &,5(x), fa(x), It is clear that e;(x) and f,{x)
satisfy the system (2.11) to (2.14) with p,(t) = p(t), T,(€) = T(€), and
the functions E,(x) and f,(x) satisfy the same system, but with p, (t) =
p{t), sand T,(€) = 7(€). From the fundamental Lemma 3.1 we have &,(x) >
g,{x) and szfx};> €, {x): hence €,(x) = g,{x), and from (2.14) we obtain
F1(2) = fy(x). This is what was to be proved.

Lemma 3.3. If the system (2.11) to (2.14) has a solution &(x), f(x),
then e(x) is a monotone decreasing function.

The proof follows immediately from Lemma 3.1 and Theorem 3.1.

Lemma 3.3. If the system {2.11) to (2.14) has a solution in the class
of continuously differentiable functions, then f'(x) satisfies the in-
equality (2.1).

Proof. Differentiasting equation (2.14) we obtsin

df dt ] de
dr = a(s () + [ dz a (2) (s) + da]dz‘
and, because €'(x) < 0, a'(e) < 0, v () > 0, we obtain £l < l(e(x)).

Further, obviously, the inequality f > ag -1 is egquivalent to the fact
that equation (2.12) has, for sll ¢ > 0, not more than one solution.

Let us suppose that for a certain t,. equation (2.12) did possess
solutions ‘2 and xz , with x, 1 4 x2 . Let us choose a solution of equa-
tion (2.11) and call it xy. Then, from equation (2.13) we have that
e(x,Y) = €(x,”) > e, and from equations (2.12) and (2.14) we obtain that
le = xzz. whichk contradicts x, # x2 : therefore f (x) > a, ~* and the
lemma is proved.

Let us note that from Lemma 3.3 it follows that, if the system (2.11)
to (2.14) has a solution, the original problem also has a solutionm.

Lemma 3.4. Suppose that one has two systems of the form (2.11) to
(2.14), with solutions g,{x), f,(x), and €,{(x), fy(x). Then
&5 (2) — & (2) | < (pay)M 0
e = {mina (g (0)} (=12, A = max |7y () — 7, ()
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p = max | py () — p (¢)| + max | p, (¢t + 2A) — p, (¢) )

Proof. Let us consider the difference €,(x) — €4(x) at a certain point
z, and suppose that &,(x) — &;(x) < 0; the other alternative can be
handled merely by permuting the subscripts 1 and 2. Then

_ 1 1
hi—h=s [ (@) | 4 (@)

_ .. 8(s3(2)) — a(e1(x)) N .
o a(e,(x))a(e‘l(x)) Fa(a @) ~nE) +

+T1(e2(x)) —Ta(ea (@) > — [ Ta(e2(®)) — Ta(e2 (2)) | > — A

] + T1(e1 (%)) — T3 (s (7)) =

From this one obtains t, — t, < 2A. Consider two sequences of type 1
z=mx! x!, zl,..., r=22% b, ...
from inequality (2.1) it follows that
wl>ed, eyi>e] (i=1,2)

Here and in what follows we shall employ the notation of Lemma 3.1.

Let
gl>e? fori<n, t2—t1<<2h for ig<n—1
Then
rr_ g1 @o—an')t, 342000t (60— n)) by ]+ 284740
" " ag+ ap® ay + ay! o
% (an' — a,?) (tn_} + tn—f — 2t51) + (a — aqlay?) (tn_l - ‘n‘f) +
T (89 1 apt) (a0 + ay’
+ 2a5! (a0 - ap?) (Tn! — T4%) < 2 (a* — aglay?) 4 2a,' (a9 + ap?) A=
(a9 + ap?) (a0 + a5?) (@0 + azt) (@ + ay?)
- ?:2:071.’ <2 or  t2—i1l< 2
Further

P2t — pr(8") = pa(4®) — pa (151 + 2h) - p2 (1 - 2A) —
—pnt 20+ p 20— > —n

For i <X n we have
I1Xx\n a (36)

¥ (E)—¥EH>00E D0 _D—b (e1>e2 2> 2 gl>e !

i—1

Therefore, putting Y'(§) = g(&), 0'(§) = q(§), we get
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e %3
ggmdx— g g (@) di + p>0 (3.7
o o2
that is, setting
1 1, 2 2.1
&g z——1 818 — 818
z(l) = i t+ "
i 1

it follows from (3.7), using the mean value theorem, that

YN C(3) 1 DY SR N DN
e e

Further, x(§) < §, and since z(§) is linear

zed)=1¢_3<e? (e =¢_I<¢g!, & [e? &
From this
q(t(&))>g@ — ao+a (E) a0+a1
g(x) g (§) —a (E) —a
and, because - A 20, one obtains
. 2u ]
— A > —A, - 3.8
= a[ 1 pay (ag+ay) | S
that is
p 1 2p
— i—1 1 p.2y
Ay [(81 &) kgo—“T pay (2o + ax)] 3.9)

There are two possible cases: (1) all - An > 0, and (2) there is ny
such that — A"l >0, - Anl+l< 0. In the first case, since the quantities

A,l are bounded, from (3.9) we have

(o]
1
et < B ot e 010

while in the second case, from (3.8)

=)
1_ g3 2p , r oel_erc S L
Enl 1"<__——-——_Pal (ao+al) o 1 1 \k§0 ak pay (ao_l..al)

The conclusion of the lemma follows immediately from this.

Lemma 3.5. Let us suppose that for x in [0, m] there exist continu-
ously differentiable functions fj(x) and ey(x), satisfying the system
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(2.11) to (2.14). Then there exist continuously differentiable functions
e(x) and f(x), defined for x >0 which satisfy the system (2.11) to
(2.14) for x >0, and also satisfy

f@=Ff(@), €(2)=2g/(2) for z&I0, m]
Proof. Let us define the function h(x) by means of the equation

@ (h(z)) =¥ (e (2)) + p (fo () + ao™'2}

and suppose that h(m) > e*. Let us introduce a function x1(x) defined by
the equation

aof (#1) + %1 — ao¥ (e (%1))

ap— a (hzy)

z = a(h(x1)) forzi<m (3.11)
From h(m) > &* and the monotonicity of the functions appearing in (3.11)
it is obvious that this equation has a unique solution. Put f,(x) =
a'l(el(z))x + T(g;(x)) and &;(x) = h(x;(x)), it is immediately verified
that these functions satisfy the system (2.11) to (2.14) on the interval
[0, “ll' with = = x,(m;); the continuous differentiability of this solu-
tion follows immediately from the continuity of eo'(x) and fo'(x). Let
us construct, in an analogous manner, the intervals [O, uz], [0. u3],....
and suppose that the process be continued indefinitely. Then we obtain,
from (2.11) and (2.12)

tm>th—1 (tn::fn(mn)_":_;")

ag— ax
Thus
tp—>o00,  p(ty)—0,  e(t,)>e>e

On the other hand, equation (2.13) gives €y = 0, and hence there
exists n such that h(m)) > €*, h(m 4,) < €*. Therefore there is an z*
for which h(x*) = e*,

From equation (3.11) it follows that x ~ ® as x;(x) = z* - 0; thus,
the functioms f 4,(x) and €,4,(x) are defined for all x >0 and are solu-
tions of the system (2.11) to (2.14); according to Theorem 3.1 one must
have €,4,(x) = €g(2), Fat1(x) = fo(x), when x EE[O, u], and the lemma is
proved.

Note. We have
@) — 2 =f(m () + 22

that i1s, for x = o
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F@) =24 @)+ ]+ o)

which assures the existence of the asymptotes of f(x). Let us note that
the existence of the asymptotes of f(x) has the following physical inter-
pretation: the speed of propagation of the unloading waves, as x - o,
approaches the speed of propagation of elastic vibrations, a;.

Theorem 3.2. 1f p(t), 7(e), a(e) are continuously differentiable func-
tions, and T'(e) > 0 for e in the interval [e*, €(0)], then the solution
of the system (2.11) to (2.14) exists, in the class of continuously
differentiable functions.

Proof. Consider a sequence of continuously differentiable functions
pi(t), converging uniformly, together with their first derivatives, to
p(t), and with p.(t) = p(0) for t <X u;(M; > 0). Then any system (2.11) to
(2.14) with p(t) = pi(t), T(E) = T, (€), has, in view of Lemma 3.5, a
solution in the class of continuously differentiable functions, because
in an arbitrary neighborhood of zero one may set

6 (g; (z)) == p(0), fi(x) = aylx
Now, from Lemma 3.4
le; (@) —&; (2) | < (par®)™ max | p; () — p; (8) |

Hence the sequence ei(’) converges to a continuous function €(x),

which, together with the function
i !
1) = ey T E @)

constitutes a solution of the system (2.11) to (2.14).

In order to prove the continuous differentiability of the solution,
one differentiates equation (2.13) and carries out considerations
analogous to those employed in the proof of Lemma 3.4, thus obtaining
bounds of the type of (3.10), after which the proof does not present any
difficulty.

In conclusion, I would like to thank N.V. Zvolinskii for his advice.
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